A quantitative study of IMRT delivery effects in commercial planning systems for the case of oesophagus and prostate tumours.

نویسندگان

  • J Seco
  • C H Clark
  • P M Evans
  • S Webb
چکیده

This study focuses on understanding the impact of intensity-modulated radiotherapy (IMRT) delivery effects when applied to plans generated by commercial treatment-planning systems such as Pinnacle (ADAC Laboratories Inc.) and CadPlan/Helios (Varian Medical Systems). These commercial planning systems have had several version upgrades (with improvements in the optimization algorithm), but the IMRT delivery effects have not been incorporated into the optimization process. IMRT delivery effects include head-scatter fluence from IMRT fields, transmission through leaves and the effect of the rounded shape of the leaf ends. They are usually accounted for after optimization when leaf sequencing the "optimal" fluence profiles, to derive the delivered fluence profile. The study was divided into two main parts: (a) analysing the dose distribution within the planning-target volume (PTV), produced by each of the commercial treatment-planning systems, after the delivered fluence had been renormalized to deliver the correct dose to the PTV; and (b) studying the impact of the IMRT delivery technique on the surrounding critical organs such as the spinal cord, lungs, rectum, bladder etc. The study was performed for tumours of (i) the oesophagus and (ii) the prostate and pelvic nodes. An oesophagus case was planned with the Pinnacle planning system for IMRT delivery, via multiple-static fields (MSF) and compensators, using the Elekta SL25 with a multileaf collimator (MLC) component. A prostate and pelvic nodes IMRT plan was performed with the Cadplan/Helios system for a dynamic delivery (DMLC) using the Varian 120-leaf Millennium MLC. In these commercial planning systems, since IMRT delivery effects are not included into the optimization process, fluence renormalization is required such that the median delivered PTV dose equals the initial prescribed PTV dose. In preparing the optimum fluence profile for delivery, the PTV dose has been "smeared" by the IMRT delivery techniques. In the case of the oesophagus, the critical organ, spinal cord, received a greater dose than initially planned, due to the delivery effects. The increase in the spinal cord dose is of the order of 2-3 Gy. In the case of the prostate and pelvic nodes, the IMRT delivery effects led to an increase of approximately 2 Gy in the dose delivered to the secondary PTV, the pelvic nodes. In addition to this, the small bowel, rectum and bladder received an increased dose of the order of 2-3 Gy to 50% of their total volume. IMRT delivery techniques strongly influence the delivered dose distributions for the oesophagus and prostate/pelvic nodes tumour sites and these effects are not yet accounted for in the Pinnacle and the CadPlan/Helios planning systems. Currently, they must be taken into account during the optimization stage by altering the dose limits accepted during optimization so that the final (sequenced) dose is within the constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiation treatment planning for prostate cancer: A new dosimetric comparison of five and seven fields IMRT plans

Background: To compare the dosimetric coverage of the planning target volume (PTV) and the dose delivered to the main Organs at Risk (OARs) in 5 and 7-field techniques of Intensity Modulated Radiation Therapy (IMRT) in patients with local prostate cancer. Materials and Methods: Twelve patients with local prostate cancer underwent 5 and 7-field IMRT planning. The delivery of IMRT was carried out...

متن کامل

Three-dimensional gel dosimetry for dose volume histogram verification in compensator-based IMRT

Background: Some tissues in human body are radiobiologically different from water and these inhomogeneity must be considered in dose calculation in order to achieve an accurate dose delivery. Dose verification in complex radiation therapy techniques, such as intensity‐modulated radiation therapy (IMRT) calls for volumetric, tissue equivalent and energy independent dosimeter. The purpose of this...

متن کامل

Assessment of out-of-field dose calculation algorithm by commercial treatment planning systems in IMRT and 3DCRT

Abstract Introduction: The accuracy an assessment of out- of- field dose due to secondary cancer risk is clinically important. Actually radiotherapy treatment planning systems are not commissioned for the out-of-field dose calculations, so the estimation of dose distributions by TPSs beyond the borders of treatment fields is not well calculate...

متن کامل

Comparison of dosimetric and radiobiological effects of various IMRT techniques regarding to joint volume between target tissue and organs at risk in prostate cancer patients

Background: Intensity-modulated radiotherapy (IMRT) is one of the most usable methods in prostate radiotherapy that is used with different techniques. The aim of this study was to evaluate and compare the dosimetric and radiobiological effects of prostate IMRT techniques regarding to joint volume between the target tissue and organs at risk as a patients anatomical parameter. Methods: This res...

متن کامل

Comparison of Radiobiological Models for Radiation Therapy Plans of Prostate Cancer: Three-dimensional Conformal versus Intensity Modulated Radiation Therapy

Purpose: In the current study, using different radiobiological models, tumor control probability (TCP) and normal tissue complication probability (NTCP) of radiotherapy plans were calculated for three-dimensional conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) of prostate cancer.Methods and Materials: 10 prostate plans were randomly selected among patients ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The British journal of radiology

دوره 79 941  شماره 

صفحات  -

تاریخ انتشار 2006